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ABSTRACT 
A small bay-town in East Java Province, Indonesia is selected as a pilot area for an integrated model 
of tsunami mitigation. Located at the south coast of Java, Pacitan is facing a seismic gap between two 
tsunami-earthquake events, which are the 1994 (M 7.2) and the 2006 tsunami (M 7.7). The efforts 
were started in 2008 by constructing the structural components in stages. Coastal forests development 
and the installation of land-based ocean radar were completed within 3 years. In line with these 
efforts, comprehensive risk assessment is now being conducted. Detailed tsunami simulations were 
carried out in addition to the preparation of vulnerability analysis. We attempted to establish novel 
risk assessment methods and products. We complete the countermeasures by planning two-year 
activities of community preparedness to ensure the sustainability of the above  mentioned efforts. The 
key objective is the development of a comprehensive and coherent tsunami mitigation system on local 
level. 
  
Keywords: Tsunami mitigation, Risk assessment, Numerical simulation, Decision support system, 
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1 INTRODUCTION 

 
1.1 Background 

Two mega-tsunamis hit two different countries in the last 8 years. Although punctuated by several 
events that are also not a small tsunami, the 2004 Indian Ocean earthquake tsunami (M 9.1) and the 
2011 Japan earthquake tsunami (M 9.0) are two of the most significant events in the last 50 years. 
These events had two different impacts on coastal communities. Due to different disaster management 
conditions, the 2004 Indian Ocean tsunami killed at least 250 thousand people with 150 thousand of 
them in Indonesia. At that time, there were no tsunami disaster mitigation efforts, including tsunami 
early warning devices available (e.g. Muhari et al. 2007). In contrary, the 2011 tsunami hit a country 
that was equipped with one of the best tsunami mitigation and early warning systems in the world 
(e.g. Imamura and Abe. 2009, Shuto and Fujima. 2009). Even though still 19.000 people were missing 
and died as a result of the tsunami (NPA, 2012), the intervention of those structural countermeasures 
in line with continuous public education significantly reduced the number of casualties. On deriving 
the objective, this paper is advantaged by the above two tsunami experiences. We suppose that if the 
integrated mitigation efforts are available, the potential of human risk due to tsunami can be 
significantly reduced by continuously educating people in tsunami prone areas. 
 
We are first looking back to the mile-stones reached as a response to the 2004 Indian Ocean tsunami 
in Indonesia. In the aftermath of the catastrophe, an ‘end-to-end’ tsunami warning system was 
designed and developed (Rudloff et al. 2009, Lauterjung et al. 2010). Although the system is seemed 
to need more time to be fully functional, it is already able to issue the warning within 5 min 
(Pariatmono. 2012). The dissemination process seems to be the priority problem to enhance in the 
near future. Hayden et al. (2007) said that the role of warning dissemination is a key part in the 
success of such large-scale evacuations and its inadequacy in certain cases has been a ‘primary 
contribution to deaths and injuries.’ Experiences in the case of the 2010 Mentawai Islands tsunami-
earthquake where the tsunami arrival time was less than 15 min (Muhari et al. 2010), and the 2011 
Japan tsunami in Papua region where the tsunami was lasting up to 12 hours (Khafid and Handayani. 
2011) are still the main weaknesses of the present system on disseminating and terminating the 
warning. As locals in Mentawai Island could not obtain fast warning due to insufficient warning time 
during the 2010 tsunami-earthquake, it yield to 546 casualties as a result of late evacuation. In Papua 
region, the long wave propagation passing through ocean ridges created several wave trains due to the 
trapped tsunami energy and excites ridge waves during the 2011 Japan tsunami (Koshimura et al. 
2001). However, tsunami warning was terminated after the second wave in the first wave train (Fig 1). 
As the result, a locality returns to the lowland area and was swept by the next waves.  
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Fig 1: The tide gauge record in Jayapura, Papua, Indonesia during the 2011 Japan tsunami 

 
The next problem is the inappropriate response of people to the tsunami warning and limited 
structural facilities to reduce tsunami impact and evacuation measures. Results of the questionnaire 
survey after the doublet outer-rise earthquake in April 2012 off the Simelue Island, Indonesia stated 
that even people in Banda Aceh are still have inadequate behavior to respond adequately to the 
warning and to start the evacuation (I-RAPID. 2012 and J-RAPID. 2012). For the latter, such 
situations do not only occur in areas with limited experience with tsunamis. In Japan, the 
inappropriate behavior especially during evacuation such as using cars, ‘family evacuation’ and 
underestimating the hazard that yields to the delay of evacuation was repeatedly observed. In this 
case, sustainable education might be the only solution. Dengler (2004) said that tsunami education 
activities have been proven as the essential tools for near-source tsunami mitigation. This might be 
correct especially for the children. A success story of an amazing evacuation conducted by students of 
an Unosumai Elementary School in Kamaishi Town, Japan is one of the warrants that continuous 
education can bring significant change on how people respond to the tsunami warning (e.g. Katada, 
2011).  
 
Learning from the above-mentioned experiences and literature, we design comprehensive 
countermeasures to be implemented in a pilot area in Indonesia. Pacitan, a small bay-town in the 
south of Java, Indonesia is selected as a case study. A step-by-step planning is consisting of three 
main parts of activities: the first is the tsunami hazard-vulnerability and risk assessment, followed by 
the development of structural countermeasures, and finally, the most important process to ensure the 
sustainability of the above efforts, the capacity development concept on tsunami preparedness, 
awareness and close assistantship in public education programs. This paper is aimed to described the 
concept and explain the past and ongoing processes in Pacitan town and district. The explanations are 
complemented by the future planned activities in the next two years in the framework of a research 
cooperation and project between Indonesia (KKP) and Germany (PROTECTS project).  
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1.2 Overview of the pilot area 

Pacitan lies on 8º 11’ S and 111º 7’ E. The U-shape bay regency is facing the southern part of the 
Indian Ocean and is characterized by flat topographic conditions with average ground level of 4 to 5 
m. Historical earthquakes compiled by Newcomb and McCann (1987) in Fig. 2 indicate that there 
were no significant large earthquake occurred in the last 150 years. However, it should be noted that 
even the earthquakes were not so strong; three last earthquakes on that region generated significant 
tsunamis along the coast. In the easternmost part of the region, the 1977 outer-rise earthquake (M 8.3) 
occurred with a maximum run-up of 8 m in Lunyuk, Sumbawa Island (Gusman et al. 2009). In 1994, 
either tsunami earthquake (Polet and Kanamori, 2000) or slip over subducting seamount 
(Abercrombie et al. 2001) with M 7.6 generated a maximum of 14 m tsunami in Banyuwangi, East 
Java Indonesia (Tsuji et al. 1995). In the westernmost part, a M 7.8 earthquake generated an extreme 
run-up height of 21 m in West Java, Indonesia (Fritz et al. 2007). The very long seismic signal and 
significant discrepancy between the earthquake magnitude and the resulting tsunami height suggested 
that this event is a tsunami-earthquake (e.g. Ammon et al. 2006). Among the 1994 and the 2006 
events, there exists a seismic gap that is directly facing Pacitan town (Fig. 2). We assume that the gap 
will be the source for future tsunamis particularly for Pacitan town, thus the hazard analysis will focus 
to explore the potential impact due to the tsunami generated in the existing gap. 

 
 

Fig. 2: Historical earthquake along the south part of Java Island (inset is the location of Pacitan) 
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1.3 Outline of the paper 

This paper is first describing the background of seismic hazard in Pacitan that underlies the objective 
of the research. Next, we formulate the concept of tsunami mitigation from a general point of view 
into a site specific context based on the related physical and socio-cultural aspects in Pacitan Town. 
The detailed tsunami hazard assessment is then carried out to evaluate the potential impact on the 
coastal community. Based on this information, two structural countermeasures will be described. One 
is the coastal forest plantation, and the second is the installation of land-based ocean radar which was 
finished last year. In the last part, we draw the plan for future activities based on the concept derived 
in the second part. Methods on vulnerability and risk assessment will be presented and key 
approaches for the future activities are described. Central is the development of a capacity-
development concept on tsunami preparedness for local communities. 

 
2 CONCEPTION OF TSUNAMI MITIGATION 

 
2.1 State of the art 

In general, mitigation is defined as any sustained effort undertaken to reduce a hazard risk through the 
reduction of the likelihood and/or the consequence component of that hazard’s risk (Coppola 2007). It 
consists of two major types that are the structural and nonstructural part. It attempts to reduce the risk 
likelihood and risk consequences, to avoid the risk, to accept the risk and to transfer the risk.  
In Japan, this concept is known as tsunami countermeasure instead of mitigation (see Shuto and 
Kojima. 2009). Based on 10 recommendations derived by the Council of Earthquake Disaster 
Prevention (CEDP) in 1933, both structural and nonstructural measures were compiled as the main 
effort to reduce the tsunami risk without taking into account the tsunami early warning –which was 
not available during that time– and the further education program. Along with the time, this concept is 
enhanced by the establishment of numerical models on tsunami computation that is the basic for 
tsunami warning systems. Also, the importance of appropriate response by the society is realized as 
one of the key factors for successful evacuation (e.g. Imamura 2005). Thus, the continuous 
assistantship and public education are necessary to reduce the risk bias (Imamura. 2009). Even though 
the 2011 event shows that these efforts have not shown positive results for the elderly, but it 
successfully suppresses the number of death among children as shown by the death distribution 
according to age and gender (NPA, 2011). 
 
In the US, through the National Tsunami Hazard Mitigation Program (NTHMP), five 
recommendations were addressed to be conducted 4 years after the 1992 California earthquake and 
tsunami. The recommendations cover broader aspects such as producing inundation maps, improving 
seismic networks, tsunami buoys, developing hazard mitigation programs and the development of 
technical guidelines and supports (Bernard. 2001). The overall accomplishment and impacts of the 
NTHMP program on developing the resilient community is given by Bernard (2005) and Trisler et al. 
(2005) that indicates the significant increment of planning and coordination, information and public 
education feedback from 16 local emergency managers along the west coasts of the US.  
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In Indonesia, such an integrated concept is not yet available. The efforts are still limited on the 
development of the tsunami warning system (Lauterjung et al. 2010, Münch et al. 2011), while the 
public education and preparedness (e.g. KOGAMI. 2011, Rafliana 2012) is conducted as a not fully 
integrated way with the above system. As a result, response of people to conduct appropriate 
evacuation is still far from the appropriate condition as shown by questionnaire surveys after the last 
major earthquakes in West Sumatran coast in 2012 (M 8.6 and 8.0) documented by I-RAPID (2012) 
and J-RAPID (2012).  
 
2.2 Formulation of mitigation concept in Pacitan Town 

Pacitan is one of the participating districts in the “Project for Training, Education and Consulting of 
Tsunami Early Warning System” (PROTECTS), the follow-up project of the German Indonesian 
Cooperation on Tsunami Early Warning System (GITEWS), to support Indonesia in strengthening the 
capacity of local governments and civil society actors so as to provide the services necessary for 
sustainable tsunami preparedness. 
 

 
 

Fig. 3: Multi-level approach to strengthen tsunami preparedness (modified from GIZ-IS, 2011) 
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Within the agreed tsunami mitigation concept focussed on the capacity-development for local 
communities, which was designed by the German Agency for International Cooperation (GIZ) 
together with the Indonesian National Board for Disaster Management (BNPB), and a number of 
provincial disaster management agencies (BPBD), a multi-level approach involving key players at all 
levels is implemented since June 2011. It follows a step-by-step approach as described in Fig. 3 to 
build awareness, knowledge and solid procedures within at-risk communities. 
 
This approach addresses the specific conditions in the context of near-field tsunamis (short arrival-
times, high level of uncertainty) which require that individuals are enabled to quickly take decisions 
and correct actions even in the absence of guidance from local authorities or the failure of warning 
services during an emergency. Local evacuation maps and procedures and warning arrangements are 
needed to support people in the risk areas in this regard. To develop such plans at village level it 
requires references regarding hazardous and safe zones and recommended evacuation strategies, as 
well as the development of local warning services. The responsibility to provide such references, 
including risk assessments, evacuation plans and the setting up of mechanisms for decision-making 
and warning dissemination to the community at risk lies with district government. Consequently, the 
capacity building approach starts by addressing the district level, especially the local disaster-
management agencies, first.  
 
The capacity-development process is facilitated through a sequence of workshops, implemented by 
the provincial government, involving representatives from local working groups. During the 
workshops the participants are introduced to the main topics, such as hazard and risk assessments, 
evacuation planning, the local warning chain, community awareness and tsunami-simulation 
exercises. Between the individual workshops the local working groups are in charge to implement the 
required action in their respective areas. The project offers technical trainings on evacuation planning 
and local warning services as well as preparing local facilitators to support preparedness processes at 
village level and to implement community awareness campaigns at grass root level.  
 
Beside the implementation of a capacity-development concept on tsunami preparedness, a good and 
complete understanding of the overall set up of the Indonesian Tsunami Early Warning System 
(InaTEWS), the time line, the warning scheme and how warnings are being distributed is needed by 
all actors who are involved in the development of the local warning dissemination mechanism. The 
National Agency of Meteorology, Climatology and Geophysics (BMKG) operates the National 
Tsunami Warning Center (NTWC) in Indonesia and is the only appointed official institution 
responsible to generate tsunami warnings. Using multiple communication channels, BMKG produces 
and sends tsunami warnings from its Warning Center in Jakarta to ‘Interface Institutions (media, local 
governements, emergency operation centers, etc.). Local authorities in tsunami-prone areas are in 
charge of informing their communities about an imminent threat and providing clear guidance on how 
to react. Near-field tsunamis, however, give only little time for warning and evacuation, so local 
dissemination must be quick and reliable (GIZ, 2010c). However, the uncertainty on the hazard posed 
by tsunami sometime cannot be judged by the limited equipment of the national tsunami warning. For 
instance, during the 2011 tsunami, the tsunami warning in Japan (that is claimed as the best system in 
the world) predicts only M 7.9 after the massive earthquake with (actually) M 9.0-9.1. The JMA  
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issued tsunami warning of 3 m tsunami height in Iwate and 6 m in Miyagi. But the actual tsunami 
observed by the GPS buoys informs that tsunami have been formed with 7 m height in front of Iwate 
coast (MLIT, 2011). In this sense, the availability of multi-layer equipment for near-field tsunami 
warning is subsequently necessary to update the first prediction made by the tsunami simulation data 
base. In Pacitan, therefore, we designed a decision support system for the local government (towns or 
city level) using a High Frequency (HF) radar antenna to observed continuously the current properties 
of the ocean. Even though the use of ocean radar in tsunami warning is still in development (Borner et 
al. 2010, Gurgel et al. 2011, we attempt to prepare the equipment we need on developing the 
technology. During the planning of the local decision support system, we plant and construct coastal 
forest along the east part of Pacitan Bay. Shuto et al (1985) said the coastal forest only effective to 
reduce tsunami with a height less than 3 m. However, their configuration along the coast could be 
useful on reducing the number of floating debris carried out by the tsunami inland. 
 
The subsequent phases of the concept displayed in Fig.3 will be explained in the following. 
 

 
3 THE PAST AND ONGOING ACTIVITIES 

 
3.1 Tsunami hazard assessment 

We determine the source scenario as parametric study using four hypothetical sources. Four scenarios 
are selected to cover the earthquake magnitude ranges from 7.5 Mw – 8.5 Mw. In the biggest 
magnitude, we add another scenario that accommodates the potential of slip in updip near the trench 
as given in Table 1. We assumed the strike, dip and rake as 284º, 12º and 99º. Particularly for the 
tsunami-earthquake component, we assumed that the additional slip in shallow sediment has the dip of 
60º. This is the same value of additional slip as for the 1994 tsunami in East Java proposed by Latief 
(2000). Also, for all fault parameter, we assumed homogenous rigidity as 3.5 × 1010 N/m2. 

Table1. Hypothetical sources used for the numerical model 
 

 
 
The epicenter of the earthquake is assumed in the middle of the largest rupture area (arrow in Fig. 4). 
We numerically computed the above source scenarios using half space method proposed by Okada 
(1985).  
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Fig 4. Rupture areas of the hypothetical sources. Dashed lines show the tsunami-earthquake scenarios, 
inset box are the nested region for inundation model in Pacitan Town. Concurrently from the largest 

to smallest are the regions 1 to 5. 
 
The initial tsunamis are then propagated numerically using shallow water equation and discretized 
using the finite different method in a leap frog scheme given by Imamura (1996). We divided the 
numerical domain into five regions. Region 1 using numerical grid size of 648 m resampled from 
GEBCO_08 data (British Oceanographic Data Center, 2008) with original accuracy of 30 arc-sec 
(about 926m) with using the nearest neighbor method. Region II and III are obtained from the similar 
data set resampling method to create 162 m cell size for region II and 40.5 for region III. For region 
IV and V, we used SRTM best tile (DLR, 2009) with accuracy of 30 m. However, one should note 
that topographic data in SRTM used in this research is the ‘surface elevation’ data that consists of all 
nature and man-made structures. Ideally, the SRTM data should be manually corrected with the 
average height of land cover features like it was demonstrated by Roemer et al. (2012), but the lack of 
field survey data made it impossible to determine the average height of the land-cover features. Thus, 
such a limitation is highly acknowledged that it may reduce the accuracy of the resulting numerical 
calculation on tsunami inundation. The SRTM best tile data is resampled into 13.5 m for region IV 
and 5 m for region V. We manually digitized the local nautical chart for Pacitan waters obtained from 
the Indonesia Navy No. 70, and manually smoothes the chart in the coastal area.  
 
The set of equations used in the numerical model is given as follow, 
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(1) 

(2) 



 

     
 

        
 
In these equations, M and N denote the discharge flux in the x and y directions, respectively; η denotes 
the water elevation, n stands for the Manning coefficient, and h represents the water depth.  
 
In the case of run-up, the friction component should accommodate different roughness values due to 
different land cover. Here, we used a method of Equivalent Roughness Model (ERM) by taking into 
account the resistance due to different roughness values in non-residential areas, and combining 
different roughness and drag force due to the existence of buildings in residential areas. The 
formulation derived by Aburaya and Imamura (2002) is given below, while detailed explanation on its 
implementation in densely populated area given by Muhari et al. (2011). 
 

         

 
Here ne is the equivalent roughness, n0 is the original manning coefficient where variation depends 
on the land cover. θ is the percentage of the bottom area occupied by the building in a grid on the 
numerical domain and D is the flow depth. CD is the drag coefficient. FEMA 55 (FEMA, 2003) 
suggests drag coefficient values from 1.25 to 2, depending on the ratio between the width of building 
and the flow depth. In case of highly populated areas where the building size varies from small to 
large, it will be very difficult to assign different values for each building. Therefore, in this case, we 
choose a fixed average value as 1.5 applied in the residential area.  
 
By using the above equations, the initial sources is numerically propagated and inundated for 3 hours 
simulation with 0.25 sec time step. The snapshot of tsunami propagation (in case of the tsunami-
earthquake) is given by Fig. 5.  
 
Impressions from the above snapshot files are that the existence ridges waves when tsunami passes 
through the sea mount just after it propagates 5 min from the source. Even though the strike of the  
source was made to be parallel to the coastline –in order to maximize the tsunami impact–, the above 
mention phenomenon showing the energy radiation is not directly hitting Pacitan Town as visualized 
in Fig. 6.  
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(3) 

(4) 

(5) 



 
Fig.5: Snapshot of tsunami propagation from the tsunami-earthquake scenario 

 
Fig.6. Distribution of maximum tsunami height from each scenario 
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The result of numerical simulation suggests that the scenario 4 produced the worst impact in term of 
the maximum tsunami height along the coast. Thus, it used for further analysis to assess the 
inundation pattern. We prepared the input data for inundation model as given in Fig. 7. Beside the 
topographic data (Fig. 7, left), a land use file was put in a separate file to calculate the roughness 
except building/houses (Fig. 7, center). For residential areas, another file consisting of the percentage 
of building occupancy on each numerical grid is prepared also in a separate file (Fig. 7, right). These 
data will be used simultaneously during the calculation. 
 

 
 

Fig.7. The input data for calculation of tsunami inundation: topographic data (left), land use data 
(center) and percentage of building occupancy (right). 

 
 

The values of Manning roughness for specific land use is refered to Kotani et al. (1997). We 
visualized the results of the inundation model in Fig.9. It can be seen that a tsunami is potentially 
flooding Pacitan Town with a maximum flow depth of 10.8 m and in average of 4 m. The area on the 
right hand side of the bay (right side of the river) is the lowest ground level in the numerical domain. 
Hence, the area shows the deepest flow depth in the region. The flow velocity is modeled with a 
maximum of 14.59 m/sec inside the fishery port (in the left part inside the harbor) and an average of 
3.6 m/sec.  
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Fig.9. Distribution of maximum tsunami flow depth and flow velocity 
 

 
3.2 Coastal forest plantation 

The coastal forest was planted in 2 phases, first was started in 2008 and the following phases was 
conducted in 2011 (Fig. 10). We use whistling pine (Casuarina equisetifolia) that has been proven to 
be appropriate for the sand type beach in south Java coasts (MoMAF, 2011). Previously, Shuto (1993) 
said that coastal forest can be functioned to stop the floating debris if the tsunami height less than 3 m. 
Furthermore, Harada and Imamura (2005) stated that the reduction of the tsunami inundation extent, 
flow depth, flow velocity and hydrodynamic force will be depending on the width and density of the 
trees in the forest. They conclude that a 200 width of coastal forest might be able to reduce the 
inundation extent and flow depth of a 3 m tsunami up to 80%. Also, it can be very useful to reduce 
tsunami energy of a 3 m tsunami up to 30%.  
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Figure 10. Location of the coastal forest development in Pacitan Bay 
 
We plan to construct at least 100 m width of costal forest. In the first and second step, the built coastal 
forest has 70 m width. Actually, original land that has been used is around 100 m. However, the trees 
that were planted in the back of the present coastal forest (Fig. 11) was the different type of whistling 
pine. It was planted by –locally called– ketapang (Terminalia Catappa). Unfortunatelly, this species is 
not successfully growth so it left an empty space behing the present forest. The problem why the 
second species is not growth is still left for further analysis. 
 

  

  
 

Figure 11. Planting and the growth of whistling pine in Pacitan Bay 
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3.3 Local decision support system 

The first local decision support system for tsunami warning in Indonesia is introduced by Muhari et 
al. (2010) using tide gauges. They put a tide gauge in a small island around 11 km from the city, and 
in real time the data was transferred to the base station in emergency office using radio frequency. 
However, not all tsunami prone cities in Indonesia has small island in front of them that can be used 
to install the tide gauge. Pacitan Bay is one of them. Therefore, we are looking for another alternative 
to develop the system that can help the local authorities to make an appropriate decision once the big 
earthquake occurred. The selection to choose radar system was motivated by facts that it can detect 
the 2011 Tohoku tsunami in Chili and Japan (Lipa et al. 2011). However, it has been admitted that up 
to present, the radar equipment is able to detect tsunami after it confirmed by the other data (such as 
tide gauge). There is no such a function that automatically discriminate which is tsunami and which is 
not available from the radar in the present time. Therefore, the development of automatic algorithm 
for the radar to detect the tsunami is still being intensively discussed. We believed, with the ability to 
detect the ocean current up to 150 km offshore, this equipment could become the basis for the 
decision support system or even the local tsunami warning in the future. To date, we already install 
the radar sensor and the visualization of the data was interfaced in Indonesian as given in Fig. 12. 
 

 
 

Figure 12. Visualization of the radar data in a simple interface 
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4 FUTURE PLANNED ACTIVITIES 

As shown in Fig.3, risk information is a crucial precondition for the implementation of tsunami 
preparedness strategies for local communities. Risk knowledge within this framework specifically 
refers to the knowledge of probabilities of hazard distribution on land and the question whether 
elements are exposed to the hazard. For the case of tsunami the knowledge of the area inundated by 
tsunami is necessary for defining the evacuation zone and the deployment of warning dissemination 
infrastructure, such as sirens. But risk knowledge is not limited to hazard and exposure assessment. 
As already defined, vulnerability assessment refers to analyzing the underlying factors that determines 
the likelihood of damage and loss of life during and after an extreme event.  
 
Within the PROTECTS project, the German Aerospace Center (DLR) is responsible to provide risk 
information for the participating districts as a basis for further capacity development and evacuation 
planning. Available hazard assessment results (see 3.1) are the basis for the development of 3 map 
products for Pacitan district covering vulnerability and risk information. The method developed 
within the GITEWS project (Strunz et al., 2011) will be used as explained in the following sub-
sections. 
 
4.1 Exposure map 
 
In case of a tsunami, the decision whether a region should be warned requires sound information on 
the spatial distribution of exposed population in order to prioritize tsunami warnings and to develop 
efficient evacuation planning strategies. In Indonesia, population distribution data are available for 
villages as smallest administrative level provided by the National Statistical Agency (BPS). To 
improve the spatial resolution of population data, a method to disaggregate population information 
from available datasets to land use classes was developed and validated by Khomarudin et al., (2010) 
as shown in Fig.13,  
 

 
Fig.13. Concept of population distribution modeling 
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Here, statistical analysis of people’s activities is used to allocate weights for the disaggregation 
whereby the determination of weighting factors that distribute the population to land use classes 
during day- and night-time is crucial. There are two sources of statistical data in Indonesia that 
provide information. Site specific information on the livelihood of population is necessary to apply 
this method in order to calculate the potential number of people engaged in different land use 
activities at various times of the day. The result of the population distribution modeling, finalized 
within this project, will be an enhanced population density map (day and night distribution) for 
Pacitan town with a scale of  1:25 000.  
 
4.2 Evacuation time map  
 
Having the information of tsunami hazard and the potential exposed people, we will start to develop 
the evacuation plan. In this step, the concept of evacuation time map (Post et al. 2009, Wegscheider et 
al. 2011) will be used to spatially determine the time needed to evacuate toward specific destination 
inside or outside the tsunami affected areas. The conception displayed in Fig.14, briefly described that 
the evacuation time that influences the normal walking speed of human depends on: (1) location of 
tsunami safe areas and their properties, (2) land cover, (3) topography (slope), (4) population density, 
(5) age and gender distribution and (6) density of critical facilities (e.g. primary schools, hospitals). 
The location of safe areas determines the distance an evacuee has to cover. Land cover and slope 
alters the evacuee’s movement and speed (ADPC, 2007). Related to demographic factors it has been 
found in several studies that age and gender distributions significantly impact fatality rates due to 
contributions to longer evacuation times. In evacuation modeling studies, the impact of population 
density and evacuation properties of different group sizes are accounted for. The larger the group and 
the higher the population density the slower the evacuation process (Klüpfel, 2003). The existence of 
critical facilities such as schools and hospitals result in reduced response capabilities due to the 
presence of people needing special attention during an evacuation (Johnson, 2006). Obviously 
physical and mental disabilities are limiting factors for individuals to cope during a disaster. 
 

 
Fig.14. Concept for evacuation time modeling  
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The basic principle for the quantification of evacuation time is a GIS analysis to define the fastest path 
(best evacuation route) from a given point to the nearest safe area. Using the determined credible 
evacuation area, so called access points to safe areas can be assigned. Additionally, first 
characteristics of a safe area referred as temporary shelter areas for evacuation are determined (e.g. 
land cover, size, slope). 
A measure of travel costs is used which can be considered as travel time (evacuation time) needed 
when approaching the next safe area. In this concept, the accessibility to a safe area is calculated on a 
cost surface which consists of a regular two dimensional grid where each cell value represents the cost 
to travel through it depending on costs introduced by land cover, population density, slope, critical 
facility density, age and gender distribution. Using the cost weighted distance approach the time 
needed from each location (raster cell) within the credible evacuation area to the next safe area is 
calculated using the ArcGIS cost distance algorithm (ESRI, 2001). For Pacitan town, an evacuation 
time map with a scale of 1 : 25 000 will be produced showing areas where evacuation is/ is not 
possible within a certain time due to available capacity of evacuation buildings (if known) and the 
available evacuation time (based on numerical modelling). 
 
4.3 Risk map 
 
As risk is conventionally expressed by the equation Risk = Hazard × Vulnerability, risk assessment is 
a logical outcome of the hazard and vulnerability assessment. Main objectives of the risk assessment 
were the identification of areas of high tsunami risk in terms of potential loss of life. Where high risk 
areas are identified, there is an urgent need for action by local authorities to improve the response 
capability of the population, thus reducing the risk. The identification of high risk areas raises the 
awareness of vulnerable “hotspots” and provides information vital to the support of emergency 
decision making. The official activities of planning and implementing risk reduction measures, like 
the construction of tsunami shelters, the governance of construction activities, the signposting of 
evacuation routes, or the installation of structural and natural coastal protection measures, need to be 
prioritized. The degree of risk is determined by a decision tree method as detailed explained in 
Wegscheider et al., (2011).  
 
4.4 Evacuation planning and socialization processes 
 
Evacuation of people in risk areas is the first priority once a tsunami early warning is received and/or 
natural warning signs indicate the possibility of a tsunami. As the available time span between a 
warning and the impact of tsunami waves in Indonesia is generally very short, all necessary 
preparations need to be made in advance to ensure that as many people as possible get a chance to 
evacuate (Spahn et al., 2010). A five-step method for tsunami evacuation planning (Fig.15) was 
developed by GIZ-IS (GIZ-IS, 2010a) within the GITEWS project, enabling local authorities and 
other stakeholders in Indonesian communities to design, disseminate, test and improve tsunami 
evacuation plans. The approach will be implemented in Pacitan district for the next two years.  
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The planning steps           Topics to be discussed      Output 
Step 1: Prepare for the 
planning 

Mandates, planning team 
and resource persons, data 
and information, resources, 
planning process and 
timeframe 

Work plan 

Step 2: Understand your 
community’s tsunami risk 

Hazard: inundation area 
and arrival time 
Vulnerability: physical 
exposure of population and 
facilities, capability to 
evacuate, preparedness and 
readiness to evacuate, 
early warning system 
Potential evacuation routes 
and shelter, high risk areas 

Maps, data inventory, 
mind map and assessment 
report 

Step3: Design your evacuation 
strategy and map 

Evacuation strategy: 
evacuation time, 
evacuation zone(s), safe 
areas, assembly areas, 
modes of evacuation, 
evacuation shelter 
buildings, evacuation 
routes, when to (self-
)evacuate 
Support during 
evacuation: traffic 
management, vulnerable 
facilities, evacuation 
signage 

Preliminary evacuation 
plan: document that 
include map, strategy and 
recommendations; draft 
public evacuation map 

Step 4: Assess, endorse and 
disseminate your evacuation 
plan 

Public assessment of the 
plan, endorsement by local 
authorities, dissemination 
to institution and public, 
outreach strategy 

Endorsed evacuation plan, 
dissemination and 
outreach plan 

Step 5: Test, evaluate and 
improve your evacuation plan 

Tsunami simulation 
exercises, means of 
observation and 
evaluation, revision of 
evacuation plan 

Plan to test, evaluate and 
improve the evacuation 
plan 

Fig.15. Five-step concept for tsunami evacuation planning (GIZ-IS, 2010a) 
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5 CONCLUSIONS 

We reported past, ongoing and future activities on developing an integrated tsunami mitigation in 
Pacitan Town, Indonesia. Started with the tsunami hazard assessment, the preliminary efforts on 
structural mitigation consist of warning equipments and coastal forest planting is conducted. In line 
with these efforts, close assistantship on strengthening the tsunami awareness and preparedness from 
district level down to individual/household level is planned. We expect that method and lessons we 
present in this paper can be applied in other tsunami prone cities in order to reduce the potential loss 
of life due to tsunami. 
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